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Analysis of Material interface Discontinuities and 
Superconvergent Fluxes in Finite Difference Theory 

R. J. MACKINNON AND G. F. CAREY 

An analysis of material interface discontinuities is developed and applied in finite difFerence 
theory to determine mathematically rigorous ace:aging techniques fcr material properties. 
This result is compared with other averaging techniques, particularly harmonic averaging, 
v,hich is often applied in practice. We also develop a class of formulas of high accuracy for 
post-processing the difference formula to compute derivatives (fluxes, stresses), and conducr 
supporting numerical studies. f I988 Academtc Prsss. 1”~. 

INTRODUCTION 

Problems involving dissimilar materials frequently arise in solid mechanics, 
pore-us media flow, heat transfer, and many other scientific disciplines. At interfaces 
between materials, the material properties (elastic moduli, permeability, cor?duc- 
tiviry, etc.) are discontinuous. The governing conservation principles require that 
the flux be continuous across these discontinuity interfaces. In a variational for- 
mulation the interface is treated as an internal boundary, and flux continuity 
follows from the variational statement as a narural “‘boundary” condition. This 
implies in the associated finite element model, if element boundaries are aligned 
along the interface, that flux continuity is enforced approximately (see. e.g., Carey 
and Oden [IS]). Moreover, the global rates of convergence remain optimal. whereas 
they are suboptimal if the element boundary does not coincide with the interface 
(Babuska [2] ). 

Finite difference theory does not implicitly offer such a “natural” mechanism for 
enforcing flux conservation at interfaces. The question of stability and convergence 
of difference schemes with discontinuous coefficients is examined in (Tikhonov and 
Samarski [ 121). In practice, finite difference discretizations are frequently employed 
in which the mesh is constructed such that the discontinuity interface falls between 
adjacent nodes. The effect of tlie jump in material modulus is then accommodated 
by using a mean modulus such as the harmonic, arithmetic, or geometric mean for 
the subinterval containing the interface. Similar ideas har-e been applied in finite 
volume methods for flux balance in one dimension (Aziz and Settari [I j and 
Patankar [ 1 1] ). 

In ihe present study, we develop a finite difference analysis for the treatment G” 
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the interface. We begin by developing a class of formulas of high-order accuracy for 
the flux at any point and then consider the flux jump at the interface. The difference 
equation may be deduced from this analysis and then, using “condensation,” a 
mathematical representation is derived which can be compared with the averaging 
strategies encountered in practice. We also observe that the analysis leads to a post- 
processing procedure for computing the flux to high accuracy. This result is 
analogous to that encountered in the superconvergent flux theory for finite elements 
(see, e.g., Wheeler [13], DuPont [S], Carey [4], Carey et al. [S]). 

1. ONE-DI1MENSIONAL ANALYSIS 

1.1. Flus Representation 

We begin with a very simple case to introduce the main ideas. Consider a one- 
dimensional domain with interface at x=X and material property k = k, for 
.Y < ,V (Q,), k = k, for .Y > .c (Q3) with k, # k2 constants. The governing equation is 

- (ku’) + hu =f in 52, and ~‘2~ (1) 

with k given above and b,f sufficiently smooth functions. In addition, we require 
the usual interface conditions 

[II] = 0, [ku’] = 0 at s = 2, (2) 

where 1.1 denotes the “jump.” 
Let x* be any point x in the domain (including .?). Expanding the (assumed 

known) solution u in a Taylor series about .Y *. for arbitrary point X=X* + 6, we 
have 

24(x* + 6) = u(x*) + du’(x*) +; u”(X*) +; u”‘(X*) + . ., 

Let g = -ku’ denote the flux. Then, from (3), 

0(x*) = 
kzc(x*) - kzi(,x* + 6) 6 

6 + 2 kzr”(x*) + 0(8’) (4) 

and using (1 ), 

0(x*) = 
k[u(x*) - ~4(s* + 6)] 6 

s 
+ - (h(.Yc*) u(x*) -f(x*), + O(P). 

2 (5) 

Thus, the truncated expression on the right yields a second-order accurate 
approximation to the flux at x*. 

The above result holds for x* = 2 since the one-sided derivatives of u in the 
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Taylor-series expansion are well defined. Moreover, repeated differentiation SF i I ) 

can be used to generate successively higher order approximations to D(:c*). 

Let 6= -d,, b= +a, (with 6,, 6,>0) define the points x*-6,, .Y*+S~ so that 
from (5) 

0,(x* 

)=k~~ [u(s*-6,)--u(x*)] s, 

6, 

--y (/7(x” 

j=k+ 
[zr(s*)-!I(.Y* + L)] 67 

s, 
+ 5 (h(s” 

Then 

-- (b(s”) 14s”) -.f(x*i)(6, + 6i):i2 + Q(6f, G,. i,7 1 

For ?I* # 2, k ~. = k + ; for .x* = X, then k _ = k, k + = k,: and the condition [oj = 0 
is approximated to order 0(6f, 6:) by the “difference” expression on the right in (7). 
If 6, = ~3~ = /I then [a] = 0 is approximated to Qih’) since the second-order term 
now cancels. 

2. DISCRETE PROBLEM 

2.1. Dij@rence Equations 

For the discrete problem, we locate grid points ’ Y .I i- i, 2. . . . . 19’ in the domain. (- ,I’.- 
Setting x* = sii s* -6, =s,.+r, and X* + 6, =.Y~+ I in (7). we have the represen- 
tation for the analytic solution 

From (8 ), by inspection, we may identify 
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as the standard 3-point difference scheme for (1) in the interior of 12, or Q2 or at 
the interface .Y;=.? with k = k, and k, =k2 as before. Note, however, that {ui} in 
(9) are now the difference solution values, not the exact values 4~~). 

2.2. Flus Calculation 

Further, formula (5) provides a scheme for accurately post-processing the flux. 
That is, using the solution {zii} to (9), we may compute the approximate flux at 
any grid point .yi as 

oi=~(u,-u;+,)+~(l~iu,-f;), : 
where the usual divided difference expression is augmented by the additional 
correction term for greater accuracy. The higher order postprocessing schemes 
follow similarly (as in Appendix 1). 

Remark. (i) If the boundary flux at one end is specified as data for problem 
( 1), say G( 1) = 7, then we can use (10) or the higher order formulas to discretize this 
boundary condition more accurately in constructing the full set of difference 
equations for this Neumann problem; (ii) in special cases (e.g., h = 0, k, .f con- 
stants), the solution to (9) is exact at the grid points (e.g.. see Carey and Oden 
[7]), i.e., zl(~J = zli and it follows immediately from (5) that flux formula (10) is 
O(P) accurate. For more general k, b,f, there are error estimates for grid point and 
flux values in finite difference analysis (e.g., see Bramble and Hubbard [3]). These 
can also be applied in an analysis of the present flux formula (10) to prove O(S’) 
accuracy, and a proof will appear in a following paper (MacKinnon and 
Carey [IO] ). 

2.3. Condtxsatior? 

We see from (8) and (9) that if X is at a node, then the flux condition is satisfied 
approximately by the difference solution. We may treat the case where X is not at a 
node by introducing a temporary node at X and then eliminating (condensing) the 
associated equation. Let xi+ ,i2 =X denote the temporary node location and 
assume, for algebraic convenience, that b is constant. From (8) at x~+~,~, setting 
b= (6, +&j/2, 

k, 

U(-‘C,+,,2)+fZf(Xj+,) 
b2 

- &bdxj+, 2) -f(sj, ,,d) + o(F) = o. (11) 

Solving for u(xi + 1,2 ) and substituting in the equation for node i, 
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-k,k,(zr(x,+,)-u(x,)) k, 
k,6,+k,S,+S,Sz& 1 

+I- (L4(.ui)-ll(.x~~ [)) 

+ hu(x;) 
h,+S, 
-+ 

k,6,5 
2 k,6,+k,6,+6,6,&~ 

(hi+6,) k,d‘,@‘(.~i+, 2) 
= --f(.~;)+k,6 2 - I 

+k,sl+s,S1~b+O(S’i. (!2) 

where II~=x-x~,. 
Then, to O(6’) we deduce the associated finite difference representation. To iden- 

tify the equivalent “averaged” coefficients or material properties on intervai 
(si. xi+ ,) we rewrite (12) as 

where 

For comparison purposes, it is useful to write 

where f, is a local correction given by 

Similar expressions can be written for the difference equation at node i + 1 (by 
inspection). 

Clearly, this scheme is formally equivalent to the standard method defined earlier 
and, hence, incorporates the required flux jump at .U = xr+ i 1 to second-order 
accuracy. Note that the condensation procedure not only influences the choice of 
mean modulus k but also b and.fas shown, and that h enters in li. In particular. if 
we consider the case h = 0, we find 

k=(6,+62)k,kz 
k,6, + k,d, 
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which is the harmonic average, k,. Moreover, if b # 0, we can express i in ( 13) 
alternatively as 

k=k,/(l+p)-k,(l-p+O(p’)) (P’< 1) (16) 

with 

P=6,6,~b/(k,6,+k16,j=0(6’). 

Note that even if the harmonic average is used, the force term locally at the inter- 
face is still modified. 

3. FINITE VOLUME FORMULATION 

A similar analysis can be made for difference equations obtained using an 
integral-based finite volume approach. Let us consider, for simplicity, the case b = 0 
and a “cell” of length h centered at node i with discontinuity interface X located at 
the cell boundary midway between xi and si+ r. Recalling the expressions in (6) for 
o-(x*) and 0+(x*), let 6, =6,=/7/2 and multiply by k, =k, and li- =k,. respec- 
tively. Setting X* = Z, adding and simplifying, we obtain 

2kik2 (u(.ri)-U(Xi+i)) h (k,-k,) _ 
+)=(k,+kJ IT 

-- 4 (k + k )fW + Wh2). (17) 
I 2 

The flux at zc = xi- ,,‘2 is simply 

cd.~i- I,zj = k, 
(u(xl- 1) - z4(myi)) + k 

h 

2' u~~~(,yi- 1,,2j + o(h3) 

L 24 

In the integral formulation, we set 

(19) 

Using (17) for .?=~~+r,~ 7 with (18 j in (19) and simplifying, we obtain, on setting k 
for the harmonic mean, 

_ g U(-Xi+ I) - 4-x;) + k u(x;) - u(xi- 1) 
h 1 h 

= f(xJ h + U(h’). (20) 

The difference expression becomes, on setting hi, I,‘2 = (fi +Ji+ ,)/2 + 0(/z’), 

(21) 
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Observe again the local correction to the force term that is needed if k i # k:. This 
point has been neglected in previous constructions (e.g., see Patankar [ 111, Aziz 
and Settari [ I]). However, since the difference equation for the grid point at xi+ : is 
also modified by a correction term of equal magnitude but opposite sign, the con- 
tribution of the local correction terms to the discrete system is O(h2). Thus, the 
effect on the numerical solution is only evident on coarse meshes. However, if the 
flux at the interface is to be calculated, then the new correction term in (17) may be 
important. It will be a significant contribution if .‘(S)(h-, -k,) is not small. Note 
that, in engineering analysis, it is common practice to calculate D(Z) in the post- 
processing phase by simply using the harmonic average and divided difference for- 
mula, i.e., the first entry on the right in (17). We shall give supporting numerical 
results in a later section. 

4. Two DIMENSIONS 

We can extend the analysis directly to higher dimensions. The corresponding 
elliptic equation is 

- v . (kVu) + bz4 =J in RIuQz, (23 j 

where k, b. fare sufficiently regular in Q, and Q, -with k discontinuous at the inter- 
face r of Qr. R,. The interface conditions are 

Once again, we take k = k, in Q,, k = k, in Q, with k, # k,. Let P be any point in 
the domain and C any straight line through P. Since the Laplacian is rotationally 
invariant, we can consider (22) in a rotated frame with the ~1 axis parallel to C. Let 
ix*, us*) be the coordinates of P in this frame. Following our previous one-dimen- 
sional analysis, we have at P 

CI+ = -k+u.,=k+ 
u(xu*, y”) - u(x* + Ax, J’*) Ax 

.I 
AX 

+T k+ I(.,; -t QjAxj’. 

Using (22), we rewrite this as 

- k + u,.,.(x*, y’)) + O(h)” (24.) 

and by further Taylor-series approximation for ~111, 
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~+ _k+(U(X*,)‘*)-zN(X*fAX,Y*)) Ax 
x - AX 

+ 2 (bu(x”, ,‘*) -j-(x*, )‘*)) 

k, Ax (u(s*, y* + Ay) - 2u(x*, 1’“) + u(x*, y* -Al,)) -- 
2 (49’ 

+ O(Ax2, Ax(Ay)“), (25) 

which yields the desired higher order scheme for computing cr:. Repeating this 
procedure for 0.;) subtracting and simplifying, we obtain, with Ax= 6, > 0, 
Ax= -6, <O, 

[lo,] ‘gzr(X*-61,y*)- k+% z4(x*,y*)+~U(X*+62,y*) I ( 1 2 i 3 
- bu(x*, “I?*) -f(x*, 4’“)) s 
+ (k, 6, + kp &) (u(x*, y* + Ay) - 224x*, y*) + u(x*, y* - Ay)) 

2 (4~~)~ 

+O(b’, h(Ay)‘) (26) 

and [o,] = 10. nJ = 0, unit normal n, across line C. We may also deduce directly 
the desired finite difference scheme at (x*, JJ*) from (26). Here, for simplicity, we 
have taken Av constant but retained Ax = - 6,) 13~ as in the one-dimensional treat- 
ment. If C coincides with the interface I-, then kp = k, and k, = kz; otherwise, 
k- = k, = k and we recover the standard Spoint scheme. 

It is common practice to use one-dimensional averaged material coefficients (such 
as the harmonic mean described earlier) for higher dimensional properties. Our 
one-dimensional analysis exhibited some of the limitations of this “model” by 
appealing to local condensation. In higher dimensions, condensation can again be 
carried out, but not explicitly at the local grid-point level. Condensation now 
corresponds to block partitioning to separate nodal values on the interface and 
simultaneous preelimination of all these values (see aiso MacKinnon and Carey 
[9]). One can, however, develop an approximate representation as follows: 

Let (x*,y*)=(~~+i~~,~~) be on r and -~i+1/2=xi+6,=xi+,-~2. Then (24) 
becomes 

CT+ =k2 
u(xi+I;‘?,);)-u(xi+l.4~j) ‘2 

I 
62 

+y (butxi+ Ii23 .Yj) -ftxi+ 1127 4;)) 

- 2 kpJxj+ Li2, J>) + O(6’) (27) 

and 
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Using this, we can solve for the interface value inqdicitl>, in 

If ~4~~. = 0, the problem degenerates to the one-dimensional case studied earlier. and 
we may use the modified coeffkients I;, b, and f obtained by condensation in the 
previous analysis. If u!-,, # 0, then using the above implicit relation and condensing 
this “pseudo-one-dimensional” case, we may derive an implicit relation for the con- 
densed system at node i, 

Expanding u,.~ in a Taylor series about (x,, J,~), 

so that lf,3 I{+ I,* v uFF 1; to O(6,) and we have the approximate representation 

-klk2(u(xi+ 1, .~j) - u(x,, ?,j)) 
k,61+k,62f6,6,6b 

+ ; (24(X,, yj)-U(X- 1. I;)) 
I 
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+ 
h.+6, k,&6 -L-+- k,6,S 

2 2 +k,Sz+kL61+616Jb 1 
bu(si, ,;.) 

+ (kz6,+k,6,+6,6,Jb) 
f(Xj+ Ii*, yjj + O(P, I’). (31) 

For b = 0, S, = S2 = /r/3, Ax = ~14’ = k we get, to 0(/z*), the finite difference formula 

(32) 

Remark. From the above derivations, we see that two correction terms now 
enter-one for the force term fi+ ,i2 and the second due to uYJ,(xi+ ij2, J;.). The 
correction due to uY,, at xi+ 1,‘2 is O(6l) and, hence, will not be significant except on 
coarse meshes and if )u.~,,~( is large at xi. The correction term fi+ ,,‘z enters in the 
same manner as in the one-dimensional case and also will be significant only on 
very coarse meshes. 

In the finite volume approach, let us for simplicity consider the case b.= 0 with 
cell C, centered at (xi, J+) so that 

j~fd,x=j~-V-(kVu)dx=~j~c -kVwnds=xj o’.nds. 
1, c‘,, ac,, 

(33) 

For cell C, using l-point Gauss quadratures, we have 

f:h’=[a,~Ii+li2-~rI:--Li.Zf6,,Iri+1:2-~gIj’~1:1]h+o(I~Zj. (34) 

Following the same procedure as in the one-dimensional case, we can write 

2k,k2 (u{-u{+,) h 
@.X li+i,2=(k,+k2) h -; 

qr I ;i- l/2 = k , 
(l& , - uj) 

h 
+ O(h’) 



FINITE DIFFERENCE: THEORY 161 

and so on. Using these expressions in (34), we have the discrete approximation 

-2k,k2 (u;+~-u~‘) 
f’h=(kl+kZ) h 

+k (i4;-ui’-l) 

1 h 

as before. Again, the method is equivalent to the previous approach and the same 
observations apply. 

5. NUMERICAL RESULTS 

In the first numerical study, we compare numerical results for a model two-point 
problem using the harmonic mean with and without the correction term to the 
source function The model problem defined in ( 1 )--( 2) is considered on (0, I) with 
homogeneous Dirichlet boundary data u(0) = 0, u( 1) =0 and parameter values: 
b = 0, f= 1. We consider two sets of material modulus values k, = 0.1, k, = 1.0 and 
k, = 0.1, k2 = 10.0. The material discontinuity is located at 7 = 0.5. The analytic 
solution to this problem is 

where a,= -l/k,, 6, = -$(3a,+a,)(k,j(k,+k,)), 6?= (k,,ikz) 6, and c?== 
- (6, + 42). 

Since all derivatives of the analytic solution higher than U” are zero, the 
approximate difference equation (9) is exact and equal to its analytic representation 
(8). Therefore, it follows that the finite difference solution to (1) using (13) is PSQCI 
at the nodes. However, when we neglect the source function correction term in (14)? 
the local accuracy of the approximation near X is degraded and the resulting finite 
difference solution is no longer exact at the nodes. 

To examine the effect of neglecting the source function correction term, we con- 
ducted a series of computations on uniformy refined meshes. In Fig. 1, we plot dis- 
crete maximum error norms I/e/( r, as a function of mesh size h on a log-log scale 
where e is the vector of grid point error values. The error has been normalized by 
the maximum analytic solution value. The error converges to zero at a rate of 2 
(slope of curves) and the magnitude of the error is significant for the coarser meshes 
only. Also, accuracy decreases as the contrast between k, and k, increases. Examin- 
ing this latter point in more detail, consider the source function correction term SC 
for a uniform mesh and constant f 
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1.6 - 

i Harmonic Avg. 

+ k/k, =l.O/O.l Geometric Avg. 

q k,/k, =l.O/O.l Arithmetic Avg. 

0.4 0.6 0.8 1.0 1.2 1.4 

-LOG h 

FIG. 1. Rates of convergence in the maximum norm for various averages and 
refinement. 

uniform 

where 

As R ranges from zero to infinity, fC varies between - $ f to $jY 
For comparison, we conducted a series -of mesh refinement computations using 

the geometric and arithmetic means with k, = 0.1, k, = 1.0. Normalized error norms 
are plotted in Fig. 1. The errors are significantly larger than those computed using 
the harmonic mean. Furthermore, convergence rates of unity are obtained and are 
suboptimal. The discrete L2 norm of the error behaves similarly. 

We also examined rates of convergence in the continuous L’ norm as the mesh is 
refined. In Fig. 2, errors in the L2 norm Ilej(, = {s e* dx j Ii’, where e = u - u,~ for 
exact solution u and piecewise linear interpolant uk (as in finite-element analysis) of 
the approximate solution vector u, are plotted for both sets of material modulus 
values, including and excluding the source function correction term. Results of 
similar accuracy and a convergence rate (slope 1.5) of O(/Z’.~) are obtained, with 
and without the source correction term. We also plot results for the case where we 
place a node on the interface and k, = 0.1, k2 = 1.0. A rate of convergence is deter- 
mined by slope 2 to be O(h’). The suboptimal rate of 1.5 in the first instance is 
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2.3 

Slope-l.5 

2.1 

0 
= 
g 1.9 
k 
k 

= 

v 2 1.7 I 
1.5 

1.1 1 " 1 
0.4 0.6 0.8 1.0 1.2 7.4 1.6 

+ Node on interface ~ k,/k,=l.O/O.l 

0 f not corrected 

q f corrected 

j k/k,=10.0/0.7 

0 f not corrected 

i 

k,/ k,=l.O/O.l 

x f corrected 

-LOG h 

FIG. 2. Rates of convergence (slope) in the L’ norm and uniform mesh retinement 

caused by the fact that linear interpolation is enforced across the interval containing 
the interface. 

In the next set of numerical studies for this problem, we computed fluxes at the 
material interface, for k, = 0.1, k, = 1.0. Results obtained using (13) and (17) are 
presented in Table I for the flux g*, computed including source correction terms, 
and (T,~ obtained by neglecting source correction terms. The value of 5* is exact 
since the analytic solution is quadratic. The flux oh is not exact, errors being 0(/r”) 
but significant only on the coarsest mesh (I? = 4). 

Finally, we compute rates of convergence for the flux obtained using the 
improved formula (5). We consider the case k, =k, = 1, h= 1: and f=x with 
~(0) = u(l) = 0, which was the subject of similar finite element studies (Carey [4]). 
Rates of convergence for the flux error at boundary .‘c = 1 and interior node point 
.t’ = 0.5 are given in Table II, and the post-processing formula is verified to be 
second-order accurate. 

TABLE I 

Fluxes u* and (TV Evaluated at x = 0.5: uelacr = 0.204545 

h u* =I? Ioh - hsti 

1.‘3 0.204545 0.181815 0.022721 

1:7 0.204545 0.200372 c!.OO4173 

I,‘11 0.204545 0.202854 0.001691 

Ii15 0.204545 0.203971 0.ooo911 
(rate - 2) 
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TABLE II 

Flux Errors for the Case k, = k2 = 1 and 
b = 1 Evaluated at .x = 0.5 and x = 1.0 

h e(0.5) 41.0) 

1;4 
l/S 
1116 

0.010180 0.00954 1 
0.002549 0.002388 
0.000638 0.000599 
(rate - 2) (rate -2) 

Tnyo-Dimensional Studies 

First. we compare results for a problem using the harmonic mean and the 
condensation approach (nodes on the interface). The model problem defined in 
(22)-(23) is considered on (0, 1) x (0, 1) for b=f=O with specified boundary data 

400x( 1 - x ), y = 0, o<x< 1 
II = 

0, otherwise, 

and material ratios k,/k, = 10, 100. The analytic solution to this problem is given in 
MacKinnon and Carey [IS]. 

The error in the discrete maximum norm is plotted against mesh size 12 in a 
log-log plot for uniform mesh refinement in Fig. 3. A convergence rate of 2 is 

0.8 c 0.8 c 

0.6 0.6 

0.4 - 0.4 - 

8 8 0.2 - 0.2 - 

5 5 
= = 

8 O- 8 O- 

T’ T’ 

-0.2 - -0.2 - o-x o-x k,/k, k,/k, =lO.O/l.O Harmonic Avg. =lO.O/l.O Harmonic Avg. 

u k/k, =lO.O/l.O Condensation u k/k, =lO.O/l.O Condensation 

- 0. 4 - 0. 4 ,,(,’ ,,(,’ C-G C-G k/k, k/k, =lOO.O/l.O Harmonic =lOO.O/l.O Harmonic Avg. Avg. 
,,(,, ,,(,, 

,‘,.’ ,‘,.’ + k,/k,=lOO.O/l.O Condensation + k,/k,=lOO.O/l.O Condensation 
,,‘;’ ,,‘;’ 

-0.6 -0.6 8 8 
0.4 0.4 0.6 0.6 0.8 0.8 1.0 1.0 1.2 1.4 1.2 1.4 

-LOG h 

FIG. 3. Rates of convergence in the maximum norm using the harmonic mean and condensation. 
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X 

FIG. 4. Interpolant of relative error in flux normal to boundary J =: 0. 0 cc I < I. 
refinements /I = 1 1 i 41 8. LZ (left half shown ). 

for three 

obtained with the error relatively insensitive to material contrast. Results given by 
the condensation approach are slightly more accurate for the coarser meshes with 
both methods yielding the same accuracy on moderate meshes. 

Remark. Recall that the correction term due to the second derivative of u in the 
direction parallel to the interface is 0(/r’) and is significant only on coarser meshes. 

In our final numerical study, we examine the accuracy of boundary flux 
approximations given by the finite difference analogs to (2.5). Relative errors in suc- 
cessive approximations along the side J = 0, 0 < x < 0.5 for k2/k I = 10 are shown in 
Fig. 4. Since the solution u is symmetric about X= 0.5, we plot fluxes for x ~0.5 
only. Also, the corner flux o,.(O, 0) is not plotted since it is given exactly by the 
specified boundary data. The figure shows that accuracy decreases as the corner is 
approached, but relative errors are still quite small. This behavior was observed in 
similar studies for finite element computations (Carey et al. [j-j). Nodal errors on 
the boundary do converge at the optimal rate (Table III). 

TABLE III 

Flux Errors for Successive Meshes 

e(0.0.0.25) ei0.0,O.j) 

1;4 
Ii8 

.1:12 

13.1 
2.60 
0.996 

(rate - 2) 

5.98 
1.15 
0.505 

(i-ate-l) 
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6. CONCLUDING REMARKS 

A detailed analysis of finite difference models for treating a material discontinuity 
interface has been developed. This leads to a modified form of the harmonic average 
for accommodating the discontinuity. We show that on coarse meshes and under 
certain conditions the new correction terms are needed but that, with only slight 
refinement, the contribution of these terms falls dramatically and the simple 
harmonic average suflices. 

Furthermore, this analysis has led to the development of a post-processing 
scheme for computing nodal fluxes to high accuracy. This scheme is particularly 
useful in instances where the primary aim of the finite-difference analysis is to 
obtain accurate fluxes (stresses). 

It should be emphasized that the results presented here are for a single rectilinear 
interface in a specified direction; however, they can be applied to a finite number of 
mutually orthogonal interfaces, provided the mesh size is sufficiently small and that 
the analysis is extended to treat the intersection of two interfaces. The problem of 
“averaging” on a coarser scale would necessitate the inclusion of multiple correction 
terms which would again become unimportant if subscale grids are used. 

APPENDIX 1: HIGHER ORDER FLUX FORMULAS 

If b is constant, repeated differentiations of (1) implies -/&+‘J + bz.&“) =.f’“’ 
and hence 

c(x*) = 
k[u(x*) - u(x* + S)] 6 

6 
+5 (bu(x”) -j-(x*)) +; (bzl’(x*)-f’(x*)) 

-n+ 1 
b 

+ . . . + (12 + 2)! 
(bdQ*) -f(N)(X* j) + o(iP +2). 

If b = 0, this expansion can be used directly. For b # 0, the odd derivatives II’, zd” 

must be estimated. For example, we may use the expansion (A.1 ) rewritten as 

-&O= z4(x*j-z4(x*+s) 6 
k 6 

+z (bu(x*) -f(x*)) + O(a2). 

and substitute in (A.l) to obtain 

0(x*) = kCu(x*)- u(x* + ‘)I +6 (bu(x*) -f(yk)j 
6 2 

” -_ 
3! 

b (‘by*) - ‘lx* + s)) +f,(r*) 
6 . 1 

+ o(s3) 

and so on. 
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&mm-k. Similar results can be obtained when k is not constant by writing I1 ) 
as kz.? = hu -.f‘- k’u’ so that instead of (5) we have 

cJ(5’) = 
k[zr(.K*) - u(x* + S)] 6 

6 
+ -, 

-( 
b(x”) u(x*) -f(x* ] + 

k’a(x*) 
ki + o(624 \ 

or 

k[u(x*) - u(x* + S)] 6 

b 
+?(h(.K*)2((.K’)--S(S*)j+0(82) 

so that 

+ ; (b(x*) q-K*) -.f(.K”))J + O(P), 1 
In summary, we see that flux formulas of arbitrary order can be generated in this 

manner at the “expense” of function and derivative evaluations of,J; h, and ii at x*. 

REFERENCES 

1. K. AZIZ AND A SETTARI. Permieunl Re.wrcoi~ Simhrion (Applied science Publ.. Ltd., Lcr,don. 
1979), p. 83. 

2. 1. BAEIJSE.\, Computing 5> 207 ( 1970). 
3. J. H. BRA~~BLE AND B. E. HUBBARD, Contribs. to D$ Eqs. 3, 399 (1964). 
4. 6. F. CAREY, J. Con7pur. Meth. Appl. Mech. Eng. 35, 1 (1982). 
5. G. F. CAREY. S. S. CHOW. AND M. SEAGER, J. Comput. Meth. Appi. Mech. Eng. 50, 107 (1985;. 
6. G. F. CAREY AND J. T. ODEN, Finite Elemenrs: Comput~iionui Aspects (Prentice-Hall, Engiewood 

Cliffs. NJ, 1983), p. 173. 
7. G. F. CAREY AYD J. T. ODEN, Finire Eiemenis: .4 Second Course (Prentice-Hall, Englewood CiiiTs, 

NJ, 19831, p. 221. 
8. T. DUPONT, SIAM J. Numer. .InnL. 13. 362 ( 1976). 
9. R. J. MACK~NNON AND G. F. COREY. Irzt. J. Numer. Mesh. Eng. 24. 393 i 1987). 

10 R. J. MACKINNON AND G. F. CAREY, “Superconvergent Derivatives: A Taylor Series Ana!ysis,” !987 
(in preparation ). 

11. S. V. PATANKAR, Numerical Hear Transfer and Fluid Now (McGraw-Hill, New York, 1980), p. ;W. 
12. .4. N. TIKHON~V AND A. A. SAMARSKII, USSR Comput. Math. Murh. Pllys. 1, 5 [ 1962). 
13. M. F. WHEELER. SIAM J. of‘Numer. Anal. II, 764 11974). 


